P-146 - N-ACETYL-L-CYSTEINE, TROLOX, AND ROSUVASTATIN PROTECT GLIAL CELLS EXPOSED TO HEXACOSANOIC ACID AGAINST INFLAMMATION, LIPID PEROXIDATION AND NITRATIVE STRESS

Marchetti DP1, Steffens L2, Jacques CE1, Deon M3, Coelho DM3, Moura DJ2, Coitinho AS1, Vargas CR1,3

(1) Universidade Federal do Rio Grande do Sul. (2) Universidade Federal de Ciências da Saúde de Porto Alegre. (3) Hospital de Clínicas de Porto Alegre. Porto Alegre - Brazil. crvargas@hcpa.edu.br

INTRODUCTION: X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by disfunction of the ABCD1 gene, which encodes a peroxisomal protein responsible for the transport of the very long-chain fatty acids from the cytosol into the peroxisome, to undergo β-oxidation. The major accumulated saturated fatty acids are hexacosanoic acid (C\textsubscript{26}: 0) and tetracosanoic acid (C\textsubscript{24}: 0) in tissues and body fluids. Recent evidence shows that oxidative and nitrative stress seems to be related with pathophysiology of X-ALD and many studies are associating antioxidants as an adjuvant therapy, since there is no completely satisfactory treatment for this neurogenetic disorder.

OBJECTIVES: Considering that glial cells are widely used in studies of protective mechanisms against neuronal oxidative stress, we investigated whether C\textsubscript{26}: 0, incorporated in a lecithin vesicle, was capable to induce oxidative/nitrative damages and inflammation to glial cells and if the compounds N-acetyl-l-cysteine (NAC), trolox (TRO), and rosuvastatin (RSV) were able to protect cells against C\textsubscript{26}: 0-induced damages.

MATERIALS AND METHODS: C\textsubscript{26}: 0 was incorporated in lecithin vesicle by sonication. Glial cells were cultured in DMEM and at confluence, the vesicles containing lecithin and C\textsubscript{26}: 0 were added. A pre-treatment was performed for 2h at 37°C with NAC (100 μM), RSV (5 μM), and TRO (75 μM). Supernatants were collected for analysis. IL-1β was measured by an Invitrogen ELISA kit, NO equivalents and isoprostanes was detected by a Cayman kit.

RESULTS: It was observed that glial cells exposed to C\textsubscript{26}: 0 presented increased NO levels, high IL-1β levels, and increased isoprostane levels, compared to native glial cells without C\textsubscript{26}: 0 exposure. Furthermore, NAC, TRO, and RSV were capable to mitigate these damages caused by the C\textsubscript{26}: 0 in glial cells.

DISCUSSION AND CONCLUSION: Our data demonstrate, for the first time in literature, that C\textsubscript{26}: 0, by itself, induced in glial cells culture: lipid peroxidation, nitrative stress and inflammation. Furthermore, we verified that NAC, TRO, and RSV were capable to attenuate damages caused by C\textsubscript{26}: 0 in glial cells. The ability of these compounds to exert protective effects in glial cell culture might be of relevance as an adjuvant treatment for X-ALD, since there is still no completely satisfactory therapy for this disorder.