P-085 - THE HFE1 P.HIS63ASP (RS1799945) MUTATION MAY ACT AS A MODIFIER IN GAUCHER DISEASE.

Starosta RT1,2, Porto SB3,4, Dornelles AD5, Poswar F2,5, Siebert M4,6, Vairo FP7,8, Schwartz IVD1,2,3,4,5

(1) School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS). Porto Alegre – RS – Brazil. Rodrigo.starosta@ufrgs.br; (2) Postgraduate Program on Genetics and Molecular Biology, UFRGS. Porto Alegre – RS – Brazil; (3) Postgraduate Program on Medical Sciences, UFRGS. Porto Alegre – RS – Brazil; (4) BRAIN Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), UFRGS. Porto Alegre – RS – Brazil; (5) Medical Genetics Service, HCPA, UFRGS. Porto Alegre – RS – Brazil; (6) Unit of Laboratorial Research, HCPA, UFRGS. Porto Alegre – RS – Brazil; (7) Center for Individualized Medicine, Mayo Clinic. Rochester – MN – USA; (8) Department of Clinical Genomics, Mayo Clinic. Rochester – MN – USA

INTRODUCTION: Gaucher disease (GD) is characterized by the accumulation of glucosylceramide in the lysosomes of reticuloendothelial system cells such as macrophages. The manifestations of GD consist mainly of hepatosplenomegaly, bone pain/deformations, osteonecrosis, anemia, and thrombocytopenia. Abnormalities in iron metabolism may play a central role in some of the clinical and biochemical features of GD. A candidate modifier gene is HFE1, the “causing” gene of hereditary hemochromatosis type I. OBJECTIVES: To analyze the role of HFE1 variants in the phenotype of GD. MATERIALS AND METHODS: Thirty-three GD patients (type I, \(n=30\); type III, \(n=3\)) were enrolled. DNA samples were extracted from peripheral blood and the HFE1 gene was sequenced by next-generation sequencing using IonTorrent-PGM. Two outcomes were derived from clinical data: 1) “altered liver enzymes”, comprising sustained alteration of ALT, AST or GGT while on treatment; and 2) “evidence of iron overload”, comprising increased transferrin saturation, hemosiderosis on liver biopsy, or increased liver iron on MRI. Pearson’s chi-square was used with a level of significance of \(p<0.05\). Patients having and not having the each of the outcomes were compared regarding the frequencies of variants in HFE1. RESULTS: Three known HFE1 variants were found: p.His63Asp (rs1799945; \(n=6\) patients; 18\%), p.Cys282Tyr (rs1800562; \(n=4\); 12\%), and c.340+4T>C (rs2071303; \(n=1\); 3\%). No patient was homozygote or compound heterozygote. Twenty-one patients (63.5\%) were included in the “altered liver enzymes” group and 9 patients (27\%) in the “evidence of iron overload” group. No significant differences of allelic frequency were found between the groups, although the allelic frequency for p.His63Asp, but not for the p.Cys282Tyr (\(p=0.683\)), was found to be borderline significant (altered enzymes: 6/42; normal enzymes: 0/24; \(p=0.063\)). CONCLUSIONS: Although statistical significance was not achieved, the borderline p-value may be due to the low sample size. Therefore, our data suggest that the HFE1 p.His63Asp may be a phenotype modifier in GD.